A validated hybrid computational fluid dynamics-physiologically based pharmacokinetic model for respiratory tract vapor absorption in the human and rat and its application to inhalation dosimetry of diacetyl.
نویسندگان
چکیده
Diacetyl vapor is associated with bronchiolar injury in man but primarily large airway injury in the rat. The goal of this study was to develop a physiologically based pharmacokinetic model for inspired vapor dosimetry and to apply the model to diacetyl. The respiratory tract was modeled as a series of airways: nose, trachea, main bronchi, large bronchi, small bronchi, bronchioles, and alveoli with tissue dimensions obtained from the literature. Airborne vapor was allowed to absorb (or desorb) from tissues based on mass transfer coefficients. Transfer of vapor within tissues was based on molecular diffusivity with direct reaction with tissue substrates and/or metabolism being allowed in each tissue compartment. In vitro studies were performed to provide measures of diacetyl metabolism kinetics and direct reaction rates allowing for the development of a model with no unassigned variables. Respiratory tract uptake of halothane, acetone, ethanol and diacetyl was measured in male F344 rat to obtain data for model validation. The human model was validated against published values for inspired vapor uptake. For both the human and rat models, a close concordance of model estimates with experimental measurements was observed, validating the model. The model estimates that limited amounts of inspired diacetyl penetrate to the bronchioles of the rat (<2%), whereas in the lightly exercising human, 24% penetration to the bronchioles is estimated. Bronchiolar tissue concentrations of diacetyl in the human are estimated to exceed those in the rat by 40-fold. These inhalation dosimetric differences may contribute to the human-rat differences in diacetyl-induced airway injury.
منابع مشابه
Inhalation dosimetry of diacetyl and butyric acid, two components of butter flavoring vapors.
Occupational exposure to butter flavoring vapors (BFV) is associated with significant pulmonary injury. The goal of the current study was to characterize inhalation dosimetric patterns of diacetyl and butyric acid, two components of BFV, and to develop a hybrid computational fluid dynamic-physiologically based pharmacokinetic model (CFD-PBPK) to describe these patterns. Uptake of diacetyl and b...
متن کاملThe use of nasal dosimetry models in the risk assessment of inhaled gases.
Nasal dosimetry models, including physiologically based pharmacokinetic (PBPK) models, computational fluid dynamics (CFD) models, and hybrid CFD-PBPK models, have played a prominent role in inhalation toxicology and the risk assessment of inhaled gases. Although different in their approach, their goals are similar: to accurately describe tissue dosimetry of inhaled gases in an anatomically accu...
متن کاملEvaluation of the Droplet Collapsibility in Inhalation Drug Delivery through a 3D Computational Study
Background: Several multiphase flow analyses have been developed to predict the fate of particles used in inhalation drug delivery; however, the collapse of droplets during their passage through respiratory tract has not been investigated. Objective: To assess the probability of droplet collapse in the upper respiratory tract.Methods: A 3D model of mouth-to-second generation airway after the tr...
متن کاملDevelopment of a physiologically based pharmacokinetic model of isopropanol and its metabolite acetone.
A physiologically based pharmacokinetic (PBPK) model for isopropanol (IPA) and its major metabolite, acetone, is described. The structure of the parent chemical model, which can be used for either IPA or acetone by choosing the appropriate chemical-specific parameters, is similar to previously published models of volatile organic chemicals such as styrene. However, in order to properly simulate...
متن کاملEthyl acrylate risk assessment with a hybrid computational fluid dynamics and physiologically based nasal dosimetry model.
Cytotoxicity in the nasal epithelium is frequently observed in rodents exposed to volatile organic acids and esters by inhalation. An interspecies, hybrid computational fluid dynamics and physiologically based pharmacokinetic (CFD-PBPK) dosimetry model for inhaled ethyl acrylate (EA) is available for estimating internal dose measures for EA, its metabolite acrylic acid (AA), and EA-mediated red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 123 1 شماره
صفحات -
تاریخ انتشار 2011